NUSANO MEDICAL RADIOISOTOPE PRODUCTION PLATFORM

Supplying the fight against cancer

Greg Moffitt, PhD Director of Target Development Contact: info@nusano.com

🕅 NUSANO

No patient should be denied the cancer care they need simply because some options are in **short supply** or **unavailable.** Breakthrough, patented ion source capable of producing a wide range of DIAGNOSTIC and THERAPEUTIC radioisotopes.

Supplying the fight against cancer by:

- Stabilizing supply chains
- Enabling innovation
- Providing unprecedented flexibility
- Increasing manufacturing capacity

Location:

 Production facility opening Q1 2025 in West Valley City, Utah (Salt Lake City)

Production plant sited & progressing ahead of schedule

ern States Fourn

West Valley City, UT

X NUSANO

Generates heavy ions, He⁺⁺ & ²H⁺, to greatly increase yield & efficiency

Beam enables production of broad array of radioisotopes

Annual preventive maintenance vs. monthly downtime

36mA ALPHA BEAM CURRENT ≥36mA **DEUTERIUM BEAM CURRENT** 288 - 720x1 **GREATER ALPHA PRODUCTION** 10,000+ HOURS RUNTIME

Performance

Particles

 $^{2}H^{+}$

³He²⁺

⁴He²⁺

7_j3+

Particle Energy 25 MeV 37.5 MeV 50 MeV 87.5 MeV

Production Capabilities

DIAGNOSTIC

Positron

67

DIAGNOSTIC

Thera. potential

Gamma, Auger

DIAGNOSTIC

Thera. potential

Gamma, Auger

DIAGNOSTIC

Positron, Gamma

DIAGNOSTIC

Thera. potential

Gamma, Auger

203

DIAGNOSTIC

Thera. potential

Gamma, Auger

DIAGNOSTIC Positron

🕅 NUSANO

Diagnostic

Therapeutic

Diagnostic & Therapeutic

Generator

Unprecedented production capacity & flexibility

HIGH VOLUME

scalable production supporting multiple product lines at launch

CUSTOMIZABLE

platform for emerging therapeutics needs

EFFICIENT

X

concurrent production enables real-time response to changing isotope needs

Simultaneous production

DIFFERENT RADIOISOTOPES

of up to

The Octupole Transformation

- The transformation takes the outer edges of the beam and folds them back on the body of the beam.
- Nominal beam distribution is • gaussian. With the transformation there is a homogenous distribution uniform over the square target area.
- Octupoles modify the distribution slightly so the effect appears 20m later.

²¹¹At Targetry

- Vertical, windowed design to moderate beam to <29 MeV
- 4 cm x 4 cm (16 cm²) or 5 cm x 5 cm
 (25 cm²) spot size
 - 12.0 cm x 1.8 cm (21.6 cm²) target at U.
 of Washington external target¹ –
 gaussian, less distributed beam
- ²⁰⁹Bi thickness: 0.1 mm
- Bismuth melted in place with similar methods to Gagnon *et a*/2012¹
- Water cooling with option for cryogenic cooling

*0.03% of alpha fluence with energy >29 MeV in each case

¹Source: Gagnon et al. (2012). Design and evaluation of an external high-current target for production of 211At. *J. Labelled Compounds and Radiopharmaceuticals, Volume 55*, Pages 436-440. DOI: 10.1002/jlcr.2968

²¹¹At Targetry – ANSYS Thermal Modeling

- Temperature distributions simulated in target using ANSYS
 - 0.595 mm Al6061 (or 0.245 mm SS316, 0.1 mm ²⁰⁹Bi layer, and Al6061 backing
 - Steady-state conditions 250 μA
 - 56 lpm cooling water flow
 - Thermal contact resistance between window and Bi set to 1x10⁻⁴ m²K/W
- Max temperature in Bi <160 °C for 4 cm x 4 cm spot size

Bismuth max temperature remains well below the melting temperature

²¹¹At: Worldwide Production

Table 1

Current ²¹¹At production sites. Facilities that have reported production of ²¹¹At during the last 5 years.

Location		Facility	Cyclotron manufacturer	Model and target	Production parameters	Current production status
North America	Durham, USA	Duke University Medical Center	CTI	CS-30 cyclotron, Internal target system	28 MeV, 100 μA	Max 9.3 GBq in 4-h
	Seattle, USA	University of Washington Medical Center	Scanditronix	MP-50, External target system	29.0 MeV, 58 μA	Max 4.3 GBq in 4-h
	Philadelphia, USA	University of Pennsylvania	Japan Steel Works (JSW)	BC3015, External Target	28.4 MeV, 10 μA	Max 395 MBq in 5-h
	Bethesda, USA	National Institutes of Health	CTI	CS-30 cyclotron, Internal target system	29.8 MeV, 43 μA	Max 1.71 GBq in 1-h
	College Station, USA	Texas A&M University	In house	K150 variable energy cyclotron	28.8 MeV, 7 μA	1.5 GBq in 9-h
Europe	Copenhagen, Denmark	Copenhagen University Hospital	Scanditronix	MC-32, Internal target system	29 MeV, 20 μA	Max 3–4 GBq in 4-h
	Nantes, France	Arronax	IBA	Cyclone 70	28 MeV, 15 μA	Production since 2020, 0.5–1 GBq capacity
Asia	Osaka, Japan	RCNP-Osaka University	In house	K140 AVF cyclotron	28.2 MeV	3 GBq expected after upgrade
	Chengdu, China	Sichuan University	CTI	CS-30	28 MeV, 15-20 µA	Max 200 MBq in 2-h
	Takasaki, Japan	QST-Takasaki, (TIARA)	In house	AVF (K110)	28.1 MeV, 4.5 µA	300 MBq in 3 h
	Chiba	QST-NIRS	In house	AVF-930	28.5 MeV, 10-13 µA	0.74-1.11GBq in 5-h
	Wako Saitama, Japan	IPCR Riken	In house	AVF	29 MeV, 40 µA	1.3 GBq in 1-h
	Fukushima City, Japan	Fukushima Medical University	Sumitomo	CYPRIS MP-30, External target system	29 MeV, 20 μA	Max 2 GBq in 4-h

Source: Yutian Feng, Michael R. Zalutsky. (2021). Production, purification and availability of 211At: Near term steps towards global access. *Nuclear Medicine and Biology, Volumes 100–101*, Pages 12-23. https://doi.org/10.1016/j.nucmedbio.2021.05.007.

~**35**⊕µA

combined worldwide alpha current being used to produce ²¹¹At **in the last 5 years**

Nusano's single facility will have an **ORDER** of MAGNITUDE greater current than current worldwide capacity

²¹¹At Production

DIRECT

²¹¹At yields: 0.44-1.1 mCi/µAhr¹

Average current 250 μA per target with up to 12 simultaneously running targets

Annual production capacity of ²¹¹At up to 27000 Ci at EOB

With co-location and/or vertical integration, single facility able to serve entire U.S. market for R&D/early phase trials

Future: ~3 production sites in U.S. and 1-2 in EU to fulfill market needs when multiple approved therapeutics on market

NUSANO ¹Source: Yutian Feng, Michael R. Zalutsky. (2021). Production, purification and availability of 211At: Near term steps towards global access. *Nuclear Medicine and Biology, Volumes 100–101*, Pages 12-23. https://doi.org/10.1016/i.nucmedbio.2021.05.007.

²¹¹At Production

Nusano's ⁷Li⁺⁺⁺ source capability untested, though we are highly confident we could do >1 mA of average current

²¹¹Rn generator for ²¹¹At - expand our service region

Calculated yearly production capacity ²¹¹Rn at EOB: 400-600 Ci

Special consideration to avoid/limit co-production of ²¹⁰Rn

NUSANO ¹Source: Yutian Feng, Michael R. Zalutsky. (2021). Production, purification and availability of 211At: Near term steps towards global access. *Nuclear Medicine and Biology, Volumes 100–101*, Pages 12-23. https://doi.org/10.1016/j.nucmedbio.2021.05.007.

No patient should be denied the cancer care they need simply because some options are in **short supply** or **unavailable.**

THE NUSANO PLATFORM WILL:

quantities of ²¹¹At

Provide **flexibility** and **scalability** to support global demand

Help **supply** the fight against cancer

CONTACT | Gregory Moffitt, PhD | info@nusano.com

