NUSANO MEDICAL RADIOISOTOPE PRODUCTION PLATFORM

Supplying the fight against cancer

Greg Moffitt, PhD Director of Target Development gregory.moffitt@nusano.com

🕅 NUSANO

No patient should be denied the cancer care they need simply because some options are in **short supply** or **unavailable.** Breakthrough, patented ion source capable of producing a wide range of DIAGNOSTIC and THERAPEUTIC radioisotopes.

Supplying the fight against cancer by:

- Stabilizing supply chains
- Enabling innovation
- Providing unprecedented flexibility
- Increasing manufacturing capacity

Location:

 Production facility opening Q1 2025 in West Valley City, Utah (Salt Lake City)

Production plant sited & progressing ahead of schedule

ern States Fourn

West Valley City, UT

🕅 NUSANO

Generates heavy ions, He⁺⁺ & ²H⁺, to greatly increase yield & efficiency

Beam enables production of broad array of radioisotopes

🕅 NUSANO

Annual preventive maintenance vs. monthly downtime

36mA ALPHA BEAM CURRENT ≥36mA **DEUTERIUM BEAM CURRENT** 288 - 720x**GREATER ALPHA PRODUCTION** 10,000+

HOURS RUNTIME.

Performance

Particles

 $^{2}H^{+}$

³He²⁺

⁴He²⁺

7_j3+

Particle Energy 25 MeV 37.5 MeV 50 MeV 87.5 MeV

Production Capabilities 25+ isotopes

DIAGNOSTIC

THERAPEUTIC

GENERATOR

²¹¹At: Worldwide Production

Table 1

Current ²¹¹At production sites. Facilities that have reported production of ²¹¹At during the last 5 years.

Location		Facility	Cyclotron manufacturer	Model and target	Production parameters	Current production status
North America	Durham, USA	Duke University Medical Center	CTI	CS-30 cyclotron, Internal target system	28 MeV, 100 μA	Max 9.3 GBq in 4-h
	Seattle, USA	University of Washington Medical Center	Scanditronix	MP-50, External target system	29.0 MeV, 58 μA	Max 4.3 GBq in 4-h
	Philadelphia, USA	University of Pennsylvania	Japan Steel Works (JSW)	BC3015, External Target	28.4 MeV, 10 μA	Max 395 MBq in 5-h
	Bethesda, USA	National Institutes of Health	CTI	CS-30 cyclotron, Internal target system	29.8 MeV, 43 µA	Max 1.71 GBq in 1-h
	College Station, USA	Texas A&M University	In house	K150 variable energy cyclotron	28.8 MeV, 7 µA	1.5 GBq in 9-h
Europe	Copenhagen, Denmark	Copenhagen University Hospital	Scanditronix	MC-32, Internal target system	29 MeV, 20 μA	Max 3–4 GBq in 4-h
	Nantes, France	Arronax	IBA	Cyclone 70	28 MeV, 15 μA	Production since 2020, 0.5–1 GBq capacity
Asia	Osaka, Japan	RCNP-Osaka University	In house	K140 AVF cyclotron	28.2 MeV	3 GBq expected after upgrad
	Chengdu, China	Sichuan University	CTI	CS-30	28 MeV, 15-20 µA	Max 200 MBq in 2-h
	Takasaki, Japan	QST-Takasaki, (TIARA)	In house	AVF (K110)	28.1 MeV, 4.5 µA	300 MBq in 3 h
	Chiba	QST-NIRS	In house	AVF-930	28.5 MeV, 10-13 μA	0.74-1.11GBq in 5-h
	Wako Saitama, Japan	IPCR Riken	In house	AVF	29 MeV, 40 µA	1.3 GBq in 1-h
	Fukushima City, Japan	Fukushima Medical University	Sumitomo	CYPRIS MP-30, External target system	29 MeV, 20 μA	Max 2 GBq in 4-h

Source: Yutian Feng, Michael R. Zalutsky. (2021). Production, purification and availability of 211At: Near term steps towards global access. *Nuclear Medicine and Biology, Volumes 100–101*, Pages 12-23. https://doi.org/10.1016/j.nucmedbio.2021.05.007.

~**35**⊕µA

combined worldwide alpha current being used to produce ²¹¹At **in the last 5 years**

Nusano's single facility will have an **ORDER** of MAGNITUDE greater current than current worldwide capacity

Unprecedented production capacity & flexibility

HIGH VOLUME

scalable production supporting multiple product lines at launch

CUSTOMIZABLE

platform for emerging therapeutics needs

EFFICIENT

X

concurrent production enables real-time response to changing isotope needs

Simultaneous production

DIFFERENT RADIOISOTOPES

of up to

Octupole Transformation

- Used to create a more homogenous distribution over square target than the incoming gaussian beam distribution
 - Reduces peak heat loads and improves target survivability
- The transformation takes the outer edges of the beam and folds them back on the body of the beam.
- square target area.
- Spot sizes of 2×2, 3×3, 4×4, or 5×5 cm².
 - Smaller spot sizes used for expensive target materials.
 - Larger spot sizes for less expensive and/or poor thermally conductive materials.

Nusano Targets

- Designed to withstand 250-500 µA average beam current (6.25 – 12.5 kW)
 - Potential for up to 1 mA current depending on target material and cooling methods
- Solid and liquid targets
- Cooled with water, cryogenic He gas, or both
- Housing materials selected for survivability
 - strength
 - thermal conductivity
 - radiation damage characteristics
 - impact on post-processing and chemistry
- Option to include window
 - prevents sublimation
 - controls beam energy
 - avoids material integrity as limiting factor on target survivability

Target Modeling Design Approaches

PRODUCTION YIELDS

calculated using measured crosssections in MCNP6.

TARGET HEAT LOADS with DEPTH

calculated with MCNP6.

2D BEAM DISTRIBUTION AT TARGET SURFACE

calculated using beam optics simulation tool Elegant. Combined with the MCNP6 result to make a 3D heat load in the target.

COOLING FLOW & HEAT TRANSFER

simulated with ANSYS Fluent code.

RESUSANC

²¹¹At Targetry

- Vertical, windowed design to moderate beam to <29 MeV
- 4 cm x 4 cm (16 cm²) or 5 cm x 5 cm
 (25 cm²) spot size
 - 12.0 cm x 1.8 cm (21.6 cm²) target at U.
 of Washington external target¹ –
 gaussian, less distributed beam
- ²⁰⁹Bi thickness: 0.1 mm
- Bismuth melted in place with similar methods to Gagnon *et al* 2012¹
- Water cooling with option for cryogenic cooling

*0.03% of alpha fluence with energy >29 MeV in each case

MCNP6 Simulated Alpha Energy Spread

🕅 NUSANO

²¹¹At Targetry – ANSYS Thermal Modeling

- Temperature distributions simulated in target using ANSYS
 - 0.595 mm Al6061 (or 0.245 mm SS316, 0.1 mm ²⁰⁹Bi layer, and Al6061 backing
 - Steady-state conditions 250 µA
 - 56 lpm cooling water flow
 - Thermal contact resistance between window and Bi set to 1x10⁻⁴ m²K/W
- Max temperature in Bi <160 °C for 4 cm x 4 cm spot size

Bismuth max temperature remains well below the melting temperature

Target Design: Physical Testing

Measurements of the pressure drop across flow geometries used to validate the ANSYS Fluent results.

Oven tests for bonding

Thermal interface

measurements - the thermal contacts between materials are crucial to heat transfer in target.

Target assembly methods development and testing to ensure thermal contacts can be repeatably achieved and material properties can be maintained

> Irradiations at external facilities prior to Nusano's availability to confirm yields, co-production of contaminants, and early estimates of target survivability

Ramped approach to irradiation with

Nusano's beam (i.e. slowly increasing average current and irradiation length)

No patient should be denied the cancer care they need simply because some options are in **short supply** or **unavailable.**

THE NUSANO PLATFORM WILL:

Produce **25+ isotopes** on a commercial scale

Provide **flexibility**, **stability** & **scalability** to support global demand Help **supply** the fight against cancer

CONTACT | Gregory Moffitt, PhD | gregory.moffitt@Nusano.com

