NUSANO MEDICAL RADIOISOTOPE PRODUCTION PLATFORM

Supplying the fight against cancer

Greg Moffitt, PhD

Director of Target Development

Commercial operations begin Q1 2025

West Valley City, UT

Q1 2025

2025

Nusano's proprietary, high-current ion source technology:

Generates heavy ions, He⁺⁺ & ²H⁺, to greatly increase yield & efficiency

Beam enables production of broad array of radioisotopes

Annual preventive maintenance vs. monthly downtime

Performance

Particles

2H+

 $^{3}\text{He}^{2+}$

⁴He²⁺

7Li3+

Particle Energy

25 MeV

37.5 MeV

50 MeV

87.5 MeV

Production Capabilities 25+ isotopes

DIAGNOSTIC

Copper-64 Beta. Positron

Rubidium-82 Positron

Flourine-18 Positron

Gallium-68 Gamma

Ga

lodine-124 Positron. Gamma

Gallium-67 Gamma

Indium-111 Gamma, Auger

THERAPEUTIC

Actinium-225 Alpha, Beta

Astatine-211 Alpha

Cesium-131 Brachytherapy, X-ray

Lutetium-177

n.c.a. Beta

Copper-67 Beta

lodine-131 Beta

Palladium-103 Brachytherapy or Auger Xrays, Auger, IC electrons

Radium-223 Alpha

lodine-123 Gamma

Zirconium-89

Positron

Lead-203 Gamma

Technetium-99m Gamma

Iridium-192

Brachytherapy,

Camma, Beta

Rhenium-186 Beta

Lead-212

Alpha

Scandium-47 Beta

Strontium-89 Beta

Gamma, IC electrons

GENERATOR

Barium-131 → Cs-131

→ Ga-68

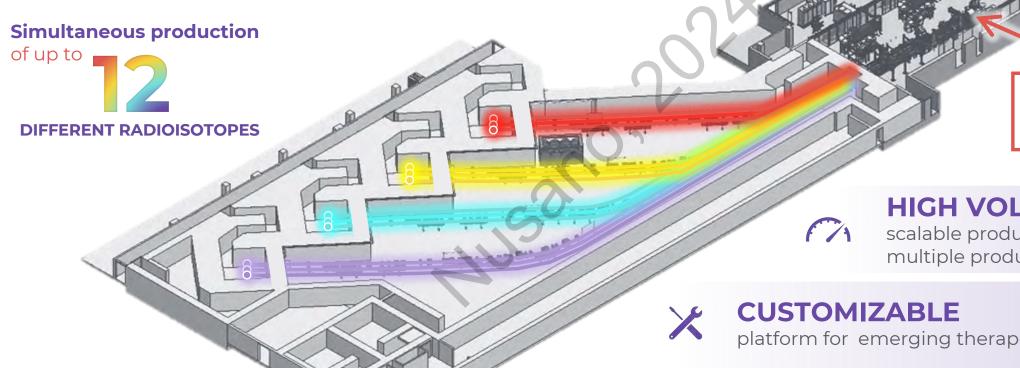
²¹¹At: Worldwide Production

Location		Facility	Cyclotron manufacturer	Model and target	Production parameters	Current production status
North America	Durham, USA	Duke University Medical Center	СТІ	CS-30 cyclotron, Internal target system	28 MeV, 100 μA	Max 9.3 GBq in 4-h
	Seattle, USA	University of Washington Medical Center	Scanditronix	MP-50, External target system	29.0 MeV, 58 μA	Max 4.3 GBq in 4-h
	Philadelphia, USA	University of Pennsylvania	Japan Steel Works (JSW)	BC3015, External Target	28.4 MeV, 10 μA	Max 395 MBq in 5-h
	Bethesda, USA	National Institutes of Health	CTI	CS-30 cyclotron, Internal target system	29.8 MeV, 43 μA	Max 1.71 GBq in 1-h
	College Station, USA	Texas A&M University	In house	K150 variable energy cyclotron	28.8 MeV, 7 μA	1.5 GBq in 9-h
Europe	Copenhagen, Denmark	Copenhagen University Hospital	Scanditronix	MC-32, Internal target system	29 MeV, 20 μA	Max 3-4 GBq in 4-h
	Nantes, France	Arronax	IBA	Cyclone 70	28 MeV, 15 μA	Production since 2020, 0.5–1 GBq capacity
Asia	Osaka, Japan	RCNP-Osaka University	In house	K140 AVF cyclotron	28.2 MeV	3 GBq expected after upgrade
	Chengdu, China	Sichuan University	CTI	CS-30	28 MeV, 15-20 μA	Max 200 MBq in 2-h
	Takasaki, Japan	QST-Takasaki, (TIARA)	In house	AVF (K110)	28.1 MeV, 4.5 μA	300 MBq in 3 h
	Chiba	QST-NIRS	In house	AVF-930	28.5 MeV, 10-13 μA	0.74-1.11GBq in 5-h
	Wako Saitama, Japan	IPCR Riken	In house	AVF	29 MeV, 40 μA	1.3 GBq in 1-h
	Fukushima City, Japan	Fukushima Medical University	Sumitomo	CYPRIS MP-30, External target system	29 MeV, 20 μA	Max 2 GBq in 4-h

Source: Yutian Feng, Michael R. Zalutsky. (2021). Production, purification and availability of 211At: Near term steps towards global access. *Nuclear Medicine and Biology, Volumes 100–101*, Pages 12-23. https://doi.org/10.1016/j.nucmedbio.2021.05.007

combined worldwide alpha current being used to produce ²¹¹At **in the last 5 years**

Nusano's single facility will have an



greater current than current worldwide capacity

Unprecedented production capacity & flexibility

HIGH VOLUME

scalable production supporting multiple product lines at launch

platform for emerging therapeutics needs

EFFICIENT

concurrent production enables real-time response to changing isotope needs

²¹¹At Production

²¹¹At yields: 0.44-1.1 mCi/μAhr¹

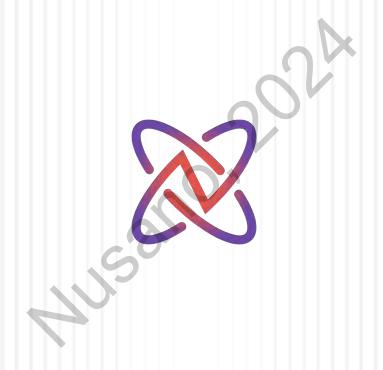
Average current 250 μA per target with up to 12 simultaneously running targets

Annual production capacity of ²¹¹At up to 27000 Ci at EOB

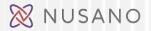
With co-location and/or vertical integration, single facility able to serve entire U.S. market for R&D/early phase trials

Future: ~3 production sites in U.S. and 1-2 in EU to fulfill market needs when multiple approved therapeutics on market

²¹¹At Production



Nusano's ⁷Li⁺⁺⁺ source capability untested, though we are highly confident we could do >1 mA of average current


²¹¹Rn generator for ²¹¹At - expand our service region

Calculated yearly production capacity ²¹¹Rn at EOB: 400-600 Ci

Special consideration to avoid/limit co-production of ²¹⁰Rn

CONTACT | Gregory Moffitt, PhD | info@nusano.com

Technology Overview Videos

Watch at https://nusano.link/tech-overview

Transforming Radioisotope Production: The Nusano Platform

Nusano's CEO, Chris Lowe, and Co-Founder, Howard Lewin, provide an overview of the Nusano production platform. The first-of-itskind technology allows for simultaneous production of multiple products and provides the flexibility to create rare and undersupplied isotopes.

Flythrough

The Nusano production platform is capable of producing a wide variety of radioisotopes for cancer diagnostics and therapeutics and can switch between products in a matter of minutes. In this video, viewers travel with the ions through Nusano's process to see how radioisotopes are created.

Technical Overview: How the Nusano Ion Source Creates Alpha Ions

Existing electron cyclotron resonance (or ECR) methods generate less than 1 percent alpha ions. Nusano solves this problem by shifting from making alpha ions in one step to making them in two steps. The result is a rich, sustained flow of heavy ions through the accelerator - more than 700 times greater than existing alpha beams.

